Novel Associations of VKORC1 Variants with Higher Acenocoumarol Requirements
نویسندگان
چکیده
BACKGROUND Algorithms combining both clinical and genetic data have been developed to improve oral anticoagulant therapy. Three polymorphisms in two genes, VKORC1 and CYP2C9, are the main coumarin dose determinants and no additional polymorphisms of any relevant pharmacogenetic importance have been identified. OBJECTIVES To identify new genetic variations in VKORC1 with relevance for oral anticoagulant therapy. METHODS AND RESULTS 3949 consecutive patients taking acenocoumarol were genotyped for the VKORC1 rs9923231 and CY2C9* polymorphisms. Of these, 145 patients with a dose outside the expected range for the genetic profile determined by these polymorphisms were selected. Clinical factors explained the phenotype in 88 patients. In the remaining 57 patients, all with higher doses than expected, we sequenced the VKORC1 gene and genetic changes were identified in 14 patients. Four patients carried VKORC1 variants previously related to high coumarin doses (L128R, N = 1 and D36Y, N = 3).Three polymorphisms were also detected: rs17878544 (N = 5), rs55894764 (N = 4) and rs7200749 (N = 2) which was in linkage disequilibrium with rs17878544. Finally, 2 patients had lost the rs9923231/rs9934438 linkage. The prevalence of these variations was higher in these patients than in the whole sample. Multivariate linear regression analysis revealed that only D36Y and rs55894764 variants significantly affect the dose, although the improvement in the prediction model is small (from 39% to 40%). CONCLUSION Our strategy identified novel associations of VKORC1 variants with higher acenocoumarol doses albeit with a low effect size. Further studies are necessary to test their influence on the VKORC1 function and the cost/benefit of their inclusion in pharmacogenetic algorithms.
منابع مشابه
A Novel, Single Algorithm Approach to Predict Acenocoumarol Dose Based on CYP2C9 and VKORC1 Allele Variants
The identification of CYP2C9 and VKORC1 genes has strongly stimulated the research on pharmacogenetics of coumarins in the last decade. We assessed the combined influence of CYP2C9 *2 and *3, and VKORC1 c.-1639G>A, 497C>G, and 1173C>T variants, on acenocoumarol dosage using a novel algorithm approach, in 193 outpatients who had achieved stable anticoagulation. We constructed an "acenocoumarol-d...
متن کاملPharmacogenetic Variation in Over 100 Genes in Patients Receiving Acenocumarol
Coumarins are widely prescribed worldwide, and in Mexico acenocumarol is the preferred form. It is well known that despite its efficacy, coumarins show a high variability for dose requirements. We investigated the pharmacogenetic variation of 110 genes in patients receiving acenocumarol using a targeted NGS approach. We report relevant population differentiation for variants on CYP2C8, CYP2C19,...
متن کاملCytochrome P450 (CYP2C9*2,*3) & vitamin-K epoxide reductase complex (VKORC1 -1639G<A) gene polymorphisms & their effect on acenocoumarol dose in patients with mechanical heart valve replacement
BACKGROUND & OBJECTIVES Studies have demonstrated the effect of CYP2C9 (cytochrome P450) and VKORC1 (vitamin K epoxide reductase complex) gene polymorphisms on the dose of acenocoumarol. The data from India about these gene polymorphisms and their effects on acenocoumarol dose are scarce. The aim of this study was to determine the occurrence of CYP2C9*2,*3 and VKORC 1 -1639G>A gene polymorphism...
متن کاملThe Influence of Polymorphisms in Cyp2c9 and Vkorc1 Genes on the Efficacy and Safety of Oral Anticoagulant Treatment
Inherited variants of the enzymes involved in drug metabolism, transporters, receptors may play an important role in drug response. Genotyping prior to drug administration seems to be a promising clinical approach in order to reduce the adverse effects of the drugs and to increase their efficacy. Oral anticoagulants (OAs) are drugs largely used in the prevention and treatment of thrombo-embolic...
متن کاملHEMOSTASIS, THROMBOSIS, AND VASCULAR BIOLOGY Cytochrome P450 2C9 (CYP2C9) and vitamin K epoxide reductase (VKORC1) genotypes as determinants of acenocoumarol sensitivity
The aim of the study is to explore the contribution of genetic factors related either to drug metabolism (cytochrome P450 2C9) or to drug target (vitamin K epoxide reductase) to variability in the response to acenocoumarol among 222 healthy volunteers after a single oral dose. Associations between a pharmacodynamic index (reduction in factor VII activity and international normalized ratio [INR]...
متن کامل